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Abstract
Objective. Deep brain stimulation (DBS) is an established and valid therapy for a variety of
pathological conditions ranging from motor to cognitive disorders. Still, much of the DBS-related
mechanism of action is far from being understood, and there are several side effects of DBS whose
origin is unclear. In the last years DBS limitations have been tackled by a variety of approaches,
including adaptive deep brain stimulation (aDBS), a technique that relies on using chronically
implanted electrodes on ‘sensing mode’ to detect the neural markers of specific motor symptoms
and to deliver on-demand or modulate the stimulation parameters accordingly. Here we will
review the state of the art of the several approaches to improve DBS and summarize the main
challenges toward the development of an effective aDBS therapy. Approach.We discuss models of
basal ganglia disorders pathogenesis, hardware and software improvements for conventional DBS,
and candidate neural and non-neural features and related control strategies for aDBS.Main results.
We identify then the main operative challenges toward optimal DBS such as (i) accurate target
localization, (ii) increased spatial resolution of stimulation, (iii) development of in silico tests for
DBS, (iv) identification of specific motor symptoms biomarkers, in particular (v) assessing how
LFP oscillations relate to behavioral disfunctions, and (vi) clarify how stimulation affects the
cortico-basal-ganglia-thalamic network to (vii) design optimal stimulation patterns. Significance.
This roadmap will lead neural engineers novel to the field toward the most relevant open issues of
DBS, while the in-depth readers might find a careful comparison of advantages and drawbacks of
the most recent attempts to improve DBS-related neuromodulatory strategies.

1. Introduction

Deep Brain Stimulation (DBS) is an effective treat-
ment for a wide range of neurological disorders, such
as Parkinson’s disease [1–3] (PD), essential tremor
(ET) [4, 5], dystonia [6–8] and Tourette syndrome
(TS) [9, 10]. DBS is also becoming a valid alternat-
ive therapy for an expanding spectrum of non-motor
diseases as pain, epilepsy and neuropsychiatric dis-
orders [11]. Despite all the hype and the hope arising
from the success of this technique, DBS is still asso-
ciated with drawbacks, i.e. adverse effects [12] and
limited efficacy [13], and the knowledge of its mech-
anisms of action is still in its prime: increasing con-
sensus of its clinical utility was not paralleled by

comparable advancement in understanding its mech-
anism of action.

Critical aspects determining DBS efficacy are
the patient selection, the choice of the appropriate
anatomical targeting and the stimulation settings.
Prior experience gained from surgical ablation stud-
ies allowed to extrapolate holistic clinical guidelines
for DBS regarding the targeted brain region (e.g. the
ventrolateral thalamus, the internal globus pallidus
(GPi) or the subthalamic nucleus (STN)) [14, 15].

As a rule, the therapeutic effect currently achiev-
able with DBS is affected by the surgical placement
accuracy [16, 17].

Finding methods based on online analysis of
neural activity [18] or on anatomical mapping and
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Table 1. Summary of the open challenges discussed in the review.

Seven open challenges for neural engineering of DBS

1 Online algorithms to assess optimal DBS electrode location and
stimulation frequency during implant surgery

See Introduction and 3.1

2 Assess the relationship between BG LFP oscillations and i) specific
symptoms, ii) residual physiological and/or compensatory activity

See 2.2

3 Increase the spatial resolution of DBS electrodes See 3.1
4 Assess the biophysical mechanisms of clinical benefits associated

to DBS
See 3.3

5 Develop in silico environment combining electrical field and spik-
ing network models accounting for CBGT functional architecture
to test DBS effects on pathological dynamics of the CBGT network

See 3.4

6 Identify symptom-specific (and task-related) biomarkers to use as
control signals for aDBS

See 4.1 and 4.2

7 Online algorithms to assess optimal stimulation pattern based on
patient condition in aDBS

See 4.3

Volume of Tissue Activated analysis [19–21] to sup-
port location and parameter selection by the neuro-
logists is a key open challenge in DBS neural engin-
eering (see table 1).

The stimulation settings ranges (e.g. 1–4 V for
stimulation intensity, 50–100 µs for pulse width and
120–160 Hz for stimulation frequency) were defined
in a series of clinical studies [22]. The optimal set of
DBS parameters can significantly vary across patients,
even within the same motor disorder and for the
same targeted nucleus. These optimal stimulation set-
tings cannot be entirely determined before electrode
insertion, nor it is possible to test the whole para-
meter combinations during implants, so their selec-
tion relies on general best DBS practices to achieve
clinical effectiveness in the absence of adverse effects
[22, 23].

Most DBS systems in current use are open-loop
devices meaning that, once parameters are manu-
ally configured, they provide a continuous stimula-
tion regardless of the ongoing fluctuations of neural
activity in the targeted nucleus. Studies on the effects
of DBS over several years of stimulation showed
the long-term efficacy of this approach in reducing
motor symptoms in PD [24–27] with a low risk of
adverse events [28, 29]. However, some adverse effects
are present (e.g. in speech [30]) and the efficacy is
reduced for some motor symptoms (e.g. freezing of
gait [31]). To the aim of solving these issues adapt-
ive deep brain stimulation (aDBS) systems stimulat-
ing only when necessary are currently under assess-
ment. The basic idea is to use biomarkers carrying
information about patient condition to trigger the
stimulation, optimize its parameters (e.g. amplitude
or frequency) or lock it (e.g. via phase-locking) to an
acquired signal. Possible advantages of this approach
are to decrease the likelihood of adverse effects and
to cover a broader range of symptoms by means of
specific stimulations. Starting from the pioneering
work of Bergmann’s group [32] in non-human prim-
ates and the groups of Simon Little and Peter Brown
[33] and Alberto Priori [34] in humans, clinical

proof-of-concepts studies have already demonstrated
the beneficial results of this approach for PD treat-
ment [35, 36] with both neural and non-neural bio-
markers as control signal for the stimulation.

In this review, we will briefly summarize the
knowledge on DBS and move then to discuss cur-
rent results on aDBS with an emphasis on the open
issues in the neural engineering aspect of the ther-
apy, as the selection of the optimal control and the
optimal stimulation. We will first provide a neuro-
physiological description of the cortico-basal ganglia-
thalamocortical (CBGT) network with a focus on the
physiopathology of PD. We will then present DBS
setup, clinical results and putative mechanisms, and
describe the state of the art of aDBS discussing the
rationale, the different approaches and the current
perspectives. Finally, we will summarize open chal-
lenges for aDBS with a possible roadmap toward a
sensible upgrade of this technology.

2. The cortico-basal
ganglia-thalamocortical network

2.1. Anatomical pathways of the basal ganglia
The functional dynamics of the CBGT network (see
figure 1(a)) involves inputs from different areas of
the cortex to the BG, followed by the processing of
this stimuli by the interplay of the different nuclei of
the BG, resulting in a modulation of the activity of
the GPi, and hence of the inhibition that this nucleus
exerts on the thalamus [37]. Thalamic activity in turn
provides a feedback to the motor cortex area from
which the inputs came from. Other pathways, such as
the one via Substantia Nigra pars reticulata (SNr) to
mesenchephalic nuclei, which is relevant in the con-
text of locomotion [38], will not be discussed here.

Historically, the basic circuit model of BG net-
work has been anatomically described as composed
by the direct and indirect pathways [39], which are
thought to control motor behavior in an opposite
fashion: the former exerts a net facilitation effect on
the motor cortex by two serial inhibitory connections
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Figure 1. (a) Schematic illustration of the Cortico-Basal Ganglia-Thalamocortical network in terms of nuclei and synaptic
connections in the dorsolateral plane of the brain. Synapses are displayed using the following color code: excitatory in red,
inhibitory in cyan, dopamine-related in green and hypothesized in black dashed. GPe: Globus pallidus external; GPi: Globus
Pallidus internal; STN: subthalamic nucleus; ZI: zona incerta; SNc: Substantia Nigra pars compacta. (b) Schematic illustration of
the insertion and action of the DBS electrode in the STN (putative functional divisions are represented). The electric field
(concentric circles) is generated from the active contacts displayed in white. The color of the circles codifies the magnitude of the
electric field (high in red, medium in orange, low in yellow and threshold in dashed black) that decays with the distance from the
active contact. Eddy currents that diffuse from the target regions are represented as radial black arrows. (c) Example of STN local
field potential (LFP) recorded with DBS electrode in a patient affected by Parkinson’s disease (top) characterized by an
over-synchronization of the beta oscillations in terms of amplitude (13–30 Hz bandpass filtered) and power (bottom).

(e.g. striatum-GPi and GPi-thalamus) while the lat-
ter provokes an encumbrance effect by three serial
inhibitory connections (e.g. striatum-Globus Pallidus
external (GPe), GPe-GPi, and GPi-thalamus). Cru-
cially, specific striatal neuron types participate to dir-
ect and indirect pathway, respectively D1- and D2-
type. A third pathway, called hyperdirect pathway,
was later integrated in this dyadic schema [40] thanks
to the finding that the STN also receives excitatory
afferents directly from the cortex. The net effect of this
pathway is inhibition through the combination of one
excitatory and one inhibitory connection (STN-GPi
and GPi-thalamus).

The CBGT network is involved in a very broad
range of functions within and beyond motor control,
and discuss them goes beyond the scope of this work.

A classic view of the role of CBGT network based
on the three pathways (see figure 1(a)) focuses on the
role of the network in action selection [41]: to activ-
ate a desired motor pattern, the motor cortex wipes
out competing and undesiredmotor outputs through
hyperdirect pathway, funnels back the proper inform-
ation to the thalamus and the cortex via the direct
pathway, and suppresses excess and competing rein-
forcement through the indirect pathway.

Recent studies have called attention to the fact
that BG integrate direct signals from an extensive
cortico-subcortical network including the cerebellum
[42]. Moreover, a recent tractography work showed

evidence of previously undetected projections from
the cortex to pallidal and striatal neurons [43]. The
dynamics of CBGT could then be even richer and
complex than what currently thought.

2.2. Oversynchronization of basal ganglia and
movement disorders
For several years, the most appealing theory under-
lying movement disorders phenomenology was the
GPi rate theory [44]. This theory posited that an over-
activation andunder-activation of theGPi are a causal
mechanism of hypokinetic disorders (e.g. PD) and
hyperkinetic ones (e.g. ballism and Huntington dis-
ease), respectively. Despite the intuitiveness of this
hypothesis, there aremany contravening observations
that make this theory no longer tenable [45].

Current theories on the BG genesis of move-
ment disorders have been developed thanks to the
paradigm shift of analyzing BG activity not through
the rate of single neurons but through the local field
potentials (LFPs) recorded with DBS electrodes (see
section 3.1). LFP is a population level measure of the
effects of synaptic input currents in the extracellular
medium [46] (figure 1(c)). Most of the LFP studies
in literature were performed through LFP recordings
from externalized DBS electrodes few days after the
DBS surgery. New devices such as the PC + S and
PerceptTM (Medtronic Inc) or AlphaDBS (Newronika
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Srl) allow LFP recordings also directly from chronic-
ally implanted impulse generator [47].

Pathophysiology of movement disorders is far
from being completely clear, and a complete review
goes beyond the scope of this work. Here we will
focus on the relationship between motor disorders
and basal ganglia oversynchronization in specific
frequency bands. As detailed below, several move-
ment disorders have been associated to abnormal
synchronization of the CBGT network in specific
frequency bands (beta band at 13–30 Hz for PD,
lower frequencies for dystonia and TS), leading to
the hypothesis that these disorders might indeed be
‘oscillopathies’. According to this theory, an over-
synchronization of the neural activity in a determ-
ined range may disrupt the physiological flow of a
particular channel of neural information leading to
behavioral deficits. This suggests that DBS might act
through a modulation of such pathological oscilla-
tions (see section 3.3) and that these could be used as
effective neural markers of motor symptoms (see sec-
tion 4.1.1). In the next future, a more complete view
on the pathophysiology of movement disorders could
arise from recent studies highlighting in particular the
role of synaptic plasticity [48–50] and of the interplay
between the CBGT network and the cerebellum [51–
53] where pathological oversynchronization has also
been observed [54].

2.2.1. Parkinson’s disease.
Subjects with PD display an abnormal LFP synchron-
ization in the beta frequency range (13–30 Hz) [55,
56] both in the GP [57–59] and in the STN [57,
60–64]. In PD, levodopa intake and STN DBS ther-
apy were found to suppress local beta oscillations
to an extent correlated with the improvement of
the parkinsonian symptoms [64–70]. Some studies
also found beta power to be correlated with motor
symptoms severity in absence of medication [61, 62]
(but see [71]). Finally, STN DBS at beta frequencies
induced a worsening of the PD symptoms support-
ing the idea that a beta resonance in the basal ganglia
circuit is dysfunctional [72]. It is worth noticing that
the physiological information carried by beta oscilla-
tions in coding movements (and movement phases)
in humans is still largely unknown. Prior studies
in healthy non-human primates demonstrated that
movement execution requires beta synchronization
to occur in a burstingmanner and not as a tonic firing
activity [73]. This suggested that the temporal organ-
ization of the LFP beta components might convey rel-
evant information about the physiology of the under-
neath neural circuit. Indeed, in PD patients there is
increasing evidence thatmore intense and longer beta
oscillation bursts, i.e. prolongation of transient epis-
odes of beta synchronization, are positively associated
with motor impairments [74]. Moreover, levodopa
was found to selectively suppress long-lasting patho-
logical beta bursts and increase the probability of

short beta bursts, thus supporting the hypothesis that
the latter may carry physiological information [73–
77].

Pathological hyperactivity of BG propagates in
the CBGT network resulting in clinically identi-
fiable cortical oscillations, which can be recorded
through electrocorticography (ECoG) using invas-
ive subdural grids on the motor cortex (M1). ECoG
recordings inM1have provided evidence of an excess-
ive phase-amplitude coupling (PAC) between the beta
phase and the gamma amplitude in PD patients [78–
80]. Also, this M1-beta-gamma PAC is disrupted by
both levodopa and high-frequency DBS [81]. In a
recent work, authors suggested that DBS-induced
PAC reduction is mediated by a shaping out of
the asymmetry profile of the beta waveform [82].
Beta band excess synchronization and sustained beta
bursts are now considered a relevant neural marker of
PD conditions, but identifying a causal chain linking
dopamine depletion to behavioral deficits through
beta oscillations is still an open challenge (table 1).

2.2.2. Dystonia.
Pallidal and subthalamic LFP recordings in dystonia
patients revealed an over-synchronization in the low-
frequency range (4–12) Hz compared to LFP record-
ings in the same areas of PD patients [83, 84]. The
power of this frequency range was found to correlate
with symptoms’ severity in a cohort of patients with
cervical dystonia [85]. GPiDBSwas found to suppress
low frequencies oscillations in patients with phasic
cervical dystonia [86], although this suppression was
not evident in phasic patients where DBS benefits
arise in a long timescale [87]. Finally, combined LFP-
EEG studies found a correlation between the severity
dystonic signs and pallido-cerebellar coupling on the
same frequency band, suggesting a putative involve-
ment of the cerebellum in the pathophysiology of
dystonia [88–90].

2.2.3. Tourette syndrome.
Micro-recordings studies in anesthetized TS patients
analyzing single neurons activity evidenced low fir-
ing rate and an increased oscillatory bursting activ-
ity in the theta range (4–8) Hz in GPi [91], thalamus
[92] and STN [18]. Together these results support the
idea that bursting is tightly linked to hyperkinetic dis-
orders symptoms [93]. Furthermore, these bursting
oscillations follow the rhythmic LFP activity in the
same frequency band [92, 94]. Indeed, LFP recordings
in awake patients have reported excessive theta activ-
ity in the centromedian-parafascicular nucleus and in
the GPi [91, 92, 95]. Finally, a recent work demon-
strated that higher preoperative motor tic severity
scores in the Yale Global Tic Severity Scale (YTGSS)
are correlated with higher theta power in the same
regions in recordings without concomitantmotor tics
[96].
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2.2.4. Essential tremor.
Neuroimaging [97] and clinical studies [98] suggest
that the cerebellum is of mechanistic importance in
ET and the tremor is likely the result of an abnor-
mal activity in the cerebellar-thalamic-cortical loop.
In oldermodels of ET, the olivary nucleus was posited
to be the prime generator of the tremor but this hypo-
thesis is falling out of favor for several reasons, i.e. the
normal appearance of the olivary nucleus on post-
mortem comparisons of ET and control brains [99]
and on most neuroimaging studies [100]. Thalamic
LFP recordings revealed specific oscillatory activity in
8–27 Hz, and this band has been found to be cor-
related with both ipsilateral sensorimotor cortex and
the contralateral muscles [101]. Moreover, in other
LFP studies enhanced low frequencies (4–7) Hz, beta
(around 20Hz) and low gamma (around 40Hz) oscil-
lations were recorded [102, 103].

3. Deep brain stimulation

This section will first describe the state of the art and
the open issues in the design of DBS hardware (3.1),
then efficacy and possible drawbacks of DBS therapy
(3.2) and some hypothesis on the underlying mech-
anisms (3.3). Finally, we will discuss computational
modelling (3.4) and transcranial magnetic stimula-
tion (TMS, 3.5) as useful tools for a better application
and understanding of DBS.

3.1. DBS set-up
In brief, DBS consists in the insertion of a stimulat-
ing electrode (see 3.1.1 and figure 1(b)) into a spe-
cific brain area (see 3.1.2) to deliver electrical pulses
(see 3.1.3) improving specific symptoms (see 3.2). A
complete description of DBS hardware goes beyond
the scope of this work and has been performed else-
where (e.g. [104]).Herewewill focus on the aspects of
the hardware that are more relevant toward the devel-
opment of an optimal aDBS.

3.1.1. DBS leads design.
Since the advent of DBS more than 25 yr ago, there
has been little change to the classic DBS electrode
which consists of a flexible 1.27 mm diameter cyl-
inder with a series of four platinum/iridium cyl-
indrical contacts at the distal end space either 1 or
0.5 mm (Medtronic Inc. Minneapolis, MN). The
optimal functional area within DBS target structures
is usually limited in size and is proximal to other sur-
rounding neural structures. The ongoing challenge in
DBS lead design is then to increase the spatial selectiv-
ity of the stimulation (see table 1). To address this
issue with the current stimulation technology, seg-
mented electrodes with higher spatial selectivity have
already been designed. One novel electrode design
(Boston Scientific Corporation, Marlborough, MA)
can control independently the stimulation paramet-
ers for each of eight contacts of the electrode. This

eight-contacts electrode was tested in a recent multi-
center, non-randomized, bilateral STN DBS study of
40 PD patients giving positive clinical results [105].
Although this design allows a more tailored stimu-
lation within the target, the current spreads radially
from the active contact limiting the steering of the
electrical field at the vertical axis of electrode. Two
approaches have been proposed to address this need
of an effective current steering and an effective elec-
tric field shaping around all three directional axes: (i)
a novel electrode with 32 contacts distributed uni-
formly around the circumference of the lead which
allows the electric field steering in four directions
[106] and (ii) a lead with four rings where each ring
is composed by three independent contacts [107].
Over a decade of computational studies have invest-
igated a variety of possible electrode configurations
[108] improving current steering [109], showing for
instance the advantages of segmented [110] and dir-
ectional electrodes [111] with decreased contact sur-
face area, focusing the effect of stimulation on small,
nearby axons. Recent works also showed the advant-
ages of tuning the direction according to axonal fiber
orientation [112]. Overall, technical advances are
toward directional leads with increased numbers of
smaller electrode contacts [113] with ad hoc stimula-
tion programming [114].

3.1.2. Optimal DBS electrodes localization.
As previously mentioned (see Introduction and table
1), determining the right placement of DBS elec-
trodes is a key challenge, as the clinical efficacy of
the therapy strongly depends on the accuracy of the
lead placement [16, 115, 116]. Indeed, sub-optimal
positioning of DBS electrodes accounts for up to
40% of cases of inadequate efficacy of stimulation,
and spreading of stimulation currents in surrounding
regions can result in side effects [104]. Although the
surgical procedure is center-specific, the localization
procedure generally relies onpreoperative stereotactic
imaging and in intraoperative electrophysiological
recordings via micro-recordings [117–119]. Multiple
micro-recordings (up to five) are sequentially car-
ried out at different depths (with 1 mm step or less)
and the optimal track and depth are selected accord-
ing to the firing pattern of the single unity activities
and their responses to external sensorimotor stim-
uli [117, 120, 121]. As the time for the neurosur-
geon to take this critical decision is limited during the
implant procedure, the development of quantitative
electrophysiological methods to define the optimal
site of stimulation may help in this assessment and
lead to better DBS clinical outcomes. In this direction,
several works proposed different approaches either
based on single cells or LFPs to define the sweet spot
for DBS [122, 123]. For instance, in a recent work
we proposed a method to select the optimal loca-
tion of DBS electrode for TS according to a simple
estimator of the burstiness of the local activity [18],
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coherently with physiological and clinical findings
[21]. Once the macro-electrode is implanted at the
desired depth, the extent of the volume of tissue activ-
ated is configured to match with the target region to
prevent the spreading of collateral currents outside
(figure 1(b)). The volume of tissue activation around
the electrode depends on the electrode shape (see
previous section) but also on the stimulation para-
meters (e.g. amplitude and pulse width), modality of
stimulation (e.g. monopolar or bipolar) and prop-
erties of the non-neural tissue surrounding the elec-
trode (e.g. homogeneity and isotropy) [104]. Overall,
the link between stimulation parameters and activ-
ated neurons is still far from being clear. Combin-
ing experimental analysis and simulations to determ-
ine this link would noticeably decrease the burden
and the complexity of the task of parameter selection
for the clinical team. Strategies that consider anatom-
ical landmarks and electrode position with individu-
alized diffusion tensor imaging could provide addi-
tional information to reduce the degree of arbitrar-
iness and the consumed time related to DBS pro-
gramming [124]. Finally, thanks to the great efforts
of Horn and colleagues, and other groups (Reich et al
[21]), identifying the electrode placement postoper-
atively has become relatively straightforward. Free
open-source software (e.g. Lead-DBS [125, 126]) are
now available to systematically determine postoper-
atively the location of the DBS electrode contacts,
offering the possibility to define the spatial distribu-
tion of potential electrophysiological markers [85],
DBS-induced network effects [127] and the location
of optimal targets [19].

3.1.3. DBS stimulation patterns.
The pattern of stimulation is a key element of DBS
devices. As described in the introduction, DBS is usu-
ally delivered with fixed stimulation settings. How-
ever, several works investigated the possible advant-
ages of irregular DBS patterns, mainly through com-
putational modeling (see section 3.4). In their sem-
inal works, Feng and colleagues defined possible ways
to look for optimal DBS patterns [128] and found
that irregular patterns could be as effective as standard
stimulation using lower amplitudes [129]. Grill and
colleagues investigated the role of temporal irregular-
ity in DBS efficacy for more than a decade [130, 131]
and found that non-regular patterns could be more
efficient in treating PD symptoms [132], in particular
when optimized bymeans of genetic algorithms [133,
134]. Similar results hold for DBS forObsessive Com-
pulsive Disorders [135]. Another proposed optimiz-
ation approach for DBS patterns tested in silico relies
on the determination of the patient-specific phase
response curve to stimulation [136].

3.1.4. Non-invasive neuromodulatory approaches.
As a final open issue in the improvement of the
DBS hardware we would like to briefly mention

interesting new attempts toward a non-electric and to
some extent non-invasive neuromodulation modalit-
ies, even if they are still far from clinical utility. Albeit
the surgical procedure for the implantation of DBS
electrodes is well-established, surgical risks and com-
plications are still possible during implants for DBS.
Hence, the development of a non-invasive method
to stimulate locally deep brain regions is potentially
an interesting line of research. Ultrasound or laser
thermal ablation and radiosurgery might provide a
lesion-based alternative to DBS [137–139]. Critic-
ally, these therapies are based on lesioning proced-
ures with exclusively symptomatic benefit and lack of
the neuromodulatory effects of DBS [140]. Another
approach for non-invasive stimulation was proposed
by Grossman and colleagues [141]. They have tested
inmice a technique called temporal interference stim-
ulation that is able to excite deeper regions (e.g. hip-
pocampal neurons) without affecting overlying cor-
tical neurons by applying high-frequency oscillating
fields in different locations outside the brain. The
interference between two high-frequency oscillating
fields filters the high frequency component and lets
through a low frequency component that oscillates at
the difference of the frequencies of two fields. Neur-
ons in the deep regions are able to pick up and to fol-
low these slow fluctuations. This temporal interfer-
ence approach does not require neither chemical nor
genetic manipulation of the brain and could be trans-
lated in human clinical trials in the next future.

3.2. Therapeutic efficacy of DBS for movement
disorders
Over the last decades, DBS has established as main-
stay treatment for several movement disorders. In PD
the two most common targets for DBS are the STN
and the GPi [142]. In a multicenter trial, 251 PD
patients were randomized to receive either the best
medical therapy or the STN DBS. After 2 yr, qual-
ity of life in the DBS group significantly increased
and the levodopa dose was reduced on average of
the 39% [143]. Many studies demonstrated that the
suppression of PD upper limb motor symptoms was
present after periods of as much as 5–10 yr after sur-
gery, even with concomitant deterioration of gait and
cognition due to the progression of the disease [144–
146]. Drawbacks of DBS therapies for PD include the
limited efficacy in ameliorating gait problems [147,
148] and the possibility of long-term adverse non-
motor effects [149, 150]. Recent studies found occur-
rence of dementia to be comparable with patients fol-
lowing medical treatment [28, 151]. Improvements
in impulse control disorders have been observed
[152] and mainly associated with medication reduc-
tion [153]. Observed adverse effects include instead
increased apathy [152] and decreased verbal fluency
[154].

DBS treatments for dystonia started about 10 yr
after the development of DBS therapy for PD. GPi
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DBS provides marked improvements for generalized,
segmental and cervical dystonia with a low frequency
for adverse effects [8, 155]. A recent meta-analysis
of more than 300 dystonia pediatric patients treated
with DBS showed that 66.1% exhibits a clinically sig-
nificant improvement in dystonic scores. Additional
targets that are under investigation for DBS in dysto-
nia are the STN and the sensorimotor region of the
thalamus [156–158].

In the case of ET, DBS of the thalamus (or, less
often, of the STN) has become a routine treatment
in the last 20 yr [159]. DBS has shown to lead to
long-term tremor control in about 70% of more
than 1000 patients since 1998, leading to a signific-
ant improvement of the overall quality of life [160].
Potential long-term side effects of chronic DBS in ET
are habituation and gait ataxia [161].

Finally, for TS various DBS targets were proposed,
including the GPi, the thalamus and the STN [10,
18, 162, 163]. The number of TS patients undergo-
ing DBS is relatively low (around 300 worldwide).
The efficacy of DBS in TS was demonstrated in sev-
eral case reports with few patients [18, 164–167].
The complexity and the variety of TS symptoms (e.g.
motor, psychologic, etc)makes it difficult to select the
appropriate target for DBS, as sub-territories of basal
ganglia are involved in motor and limbic pathways.
DBS for TS patients is overall reputed a safe proced-
ure but different side effects, probably stimulation-
related, are reported, i.e. apathy, lethargy and also
maniac ad sexual disorders [168, 169].

Overall, continuous DBS is a successful therapy
for many motor disorders related symptoms but, as
we will discuss in section 4, a number of side effects
as those listed above could probably be avoided with
a more selective stimulation. Other important weak-
nesses of the conventional open loop DBS are (i)
subject-dependency, (ii) time-consuming program-
ming, (iii) frequent visits to clinic for programming,
(iv) involvement of programming experts, v) short
battery life [22, 170–172].

3.3. Mechanisms of action of deep brain
stimulation
At its most basic level, DBS generates electrical fields
to stimulate neural elements, mostly axons around
the stimulation site, resulting in ionic channels activ-
ity possibly leading to action potentials (APs) and/or
the release of the neural transmitters [173]. Not-
withstanding all the studies on DBS in the last dec-
ades, understanding how this basic mechanism trans-
lates into clinical benefits is still an open challenge
(table 1). A possible limitation of older studies was
that they focused mainly on the effects of DBS on
local or immediately downstream structures starting
from the assumption that the CBGT network worked
as a feedforward network of local processor units.
Subsequent studies showed instead a parallel and
distributed functional organization [174] composed

of multiple distinct loops. The question is then
whether and how local DBS perturbations percolate
and reverberate through the whole CBGT network,
rendering the therapeutic DBS mechanism a sys-
tem effect. Many studies have confirmed a more sys-
tematic mechanism involving antidromic and ortho-
dromic excitation of axon both afferent and efferent
to the site of the stimulation [21, 175–179] with spe-
cific effects associated to the stimulation of the dif-
ferent pathways [127]. Effects of DBS of STN has
been found to extend to antidromic activation of
primary motor cortex [180] and modulation of cere-
bellar activity [181]. Recording from structures that
receive the input from the DBS target are coher-
ent with an increased activation of the stimulated
regions: thalamic activity was found to decrease dur-
ing GPi DBS [182] and GPi activity was found to
increase during STN DBS [173]. Functional mag-
netic resonance imaging [183] and positron emis-
sion tomography [184] in humans confirmed a con-
sistent activation of the efferent structures from the
DBS target. However, recent results suggest an inhib-
itory effect of DBS on local activity [185–187]. A
possible underlying mechanism might be that elec-
trical stimulation induces a release of neurotransmit-
ters from the presynaptic terminals of afferent pro-
jections, and this leads to (i) an overall hyperpolariza-
tion due to the high prevalence of GABAergic termin-
als over glutamatergic terminals, (ii) synaptic deple-
tion, and (iii) differential potentiation of inhibitory
synapses [187].

3.3.1. Information lesion hypothesis.
An interesting hypothesis focuses on the disrup-
tion of the pathological information transmission
rather than on the disruption of the pathological
activity. The underlying concept is that patholo-
gical information transmission could be disrupted by
the new stimulation-induced activity [188]. DBS—
especially at high frequencies—can influence the syn-
aptic communication in two ways: (i) orthodromic
DBS-induced APs outnumber the intrinsic ones and
(ii) antidromic DBS-induced APs collide and block
most of the intrinsic ones that travel orthodromically.
This results in a shift of the repetitive pathological
low-frequency bursting pattern with regularized and
more tonic patterns at higher frequencies [189]. Since
the stimulation frequency is constant, the informa-
tion of the DBS input signal is null, generating what
is known as the ‘information lesion’ effect [190]. Sev-
eral studies focused on the role of synaptic filtering
induced by DBS as the key mechanism of informa-
tion lesion [191]. The synaptic filtering mechanism
posits that synapses under DBS action act as high-
pass filters, leading to a fast depletion of stored neur-
otransmitters. Though axons are able to fire until
frequencies of approximately 100 Hz, synaptic trans-
mission is not able to occur at the same consistency
[192]. In the context of excessive beta oscillations as
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in PD the insertion of 130 Hz stimulation can res-
ult in a selective suppression of the lower frequency
pathological oscillations. This theory is supported by
the fact that DBS can result in inhibition of cortically
evoked responses and spontaneous discharges [193]
but remains elusive in different aspects such as the
neuronal mechanisms that would elicit pattern reg-
ularization, frequency-specific effects and systemic
consequences in CBGT network of pattern regulariz-
ation.

3.4. Computational models of DBS
Computational modelling is a fundamental tool in
the challenge to improve targeting and stimulation
parameters in DBS. The construction of models that
successfully may reproduce activity in healthy and
unhealthy conditions and characterize the effects of
DBS applied to a specific target is nowadays an open-
challenge (table 1) formany reasons: (i) CBGT neural
circuits are distributed and complex, (ii) DBS directly
modulates whole network’s dynamics, and (iii) exper-
imental data of an entire circuit in different condi-
tions (e.g. healthy, unhealthy with and without DBS)
are currently impossible to collect. Overall, then, the
challenge is to build a model describing the complex
dynamics of the CBGT network to the extent to be
able to predict the functional consequences of DBS,
starting from the limited information that can be
extracted from data collected asynchronously in dif-
ferent nodes of the network. Currentmodels of neural
networks and DBS are predominantly biophysical,
and they account for several factors that affect the
electrophysiological behavior of neurons, such as the
dendritic integration of synaptic inputs, the electrical
excitability and the processing of external stimuli like
DBS pulses [188, 194–197]. A general biophysical
DBS model for electrode placement is composed by
two fundamental components: an electric fieldmodel
and a neural activation model [198, 199]. The former
is an abstraction of the voltage distribution generated
by the stimulating electrode while the latter resembles
the reaction of the neuron to the stimulation. The
voltage field generated by an implanted DBS elec-
trode is a 3D complex phenomenon that can be simu-
lated using finite element methods at different orders
of detail (e.g. point source electrodes in an infinite
homogeneous medium [200], to clinical electrodes
in a human brain [188], to detailed representations
of the electrode–tissue interface [197]), knowing the
geometry of the electrode, the spatiotemporal prop-
erties of the stimulus and the electrical properties
of the surrounding tissue. A lot of effort was spent
on developing patient-specific DBS models due to
their impact on analysis of the anatomical and elec-
trical target of the stimulation. The electric field pre-
dictions from modern DBS models have been com-
pared to experimental activation of internal capsula
defined from electromyography (EMG) recordings
from different muscle groups in the contralateral side

of the patient, making a connection between DBS
model and experimental activation [197]. The neural
response can be simulated with multicompartment
cablemodels where each compartment is an electrical
resistor-capacitance (RC) circuit and they are connec-
ted in series by resistors representing the intracellu-
lar resistance [201, 202]. As a result, each neuron can
be hyperpolarized or depolarized in different ways
according to the relative electrical source-cell distance
and the stimulation settings. Computational mod-
els can be useful to test hypothesis about network
dynamics and potential DBS therapeuticmechanisms
that cannot be simply tested experimentally as they
would require synchronous multi-site recordings. A
model of STN DBS has been used to reconcile the
experimental paradox of soma inhibition and outflow
excitation during DBS stimulation [203]. This model
predicted that soma and axon of the same cell may
exhibit unrelated firing patterns, i.e. the somatic fir-
ing was suppressed while the axon fired at approx-
imately the stimulation frequency. Also, many stud-
ies showed numerically that antidromic activation of
axon terminals can lead to widespread activation or
inhibition of targets remote from the site of stimula-
tion and that antidromicmechanisms should be care-
fully integrated in the interpretation of DBS mechan-
isms using evoked potential studies or functional ima-
ging [204–206]. Santaniello and colleagues showed
that high-frequency DBS may achieve a global pat-
tern regularization through the emergency of res-
onance effects in the CBGT loop (reinforcement-
loop mechanism) [196]. Interestingly, this hypo-
thesis overcomes the limitations of information lesion
hypothesis as it suggests that pattern regularization
is a systemic effect and a by-product of simultan-
eous occurrence of several conditions: (i) CBGT is
a network of parallel, polysynaptic and re-entrant
loops, (ii) DBS produces time-locked stimuli and (iii)
they travel along different polysynaptic pathways and
eventually they are gathered in the same structure
(i.e. striatum). Neuronmodels have been used also in
DBS design problems such as closed-loop regulation
of DBS and offline optimization of low-frequency
and irregular DBS patterns. Several works focused on
single-site linear [207, 208],multi-site linear [209], or
non-linear delayed feedback stimulation techniques
[210]. They inherently operate in a system with an
input signal where the delayed activity of the patho-
logical population is fed back into the system in such
a way to shift the activity to desynchronized state
(figure 2(a), bottom right). Popovych and colleagues
proposed a method combining high-frequency DBS
stimulation and pulsatile linear or non-linear delayed
feedback to suppress over-synchronization in a par-
kinsonian STN-GPe model [211]. In this work, the
amplitude of the DBS pulses was modulated by a
delayed and filtered version of the LFP. In this exper-
imental design, the time between the cathodic and
anodic phases of the biphasic charge-balanced pulse
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Figure 2. Schematic of possible aDBS triggers. (a) Local field potential-based triggers. Top left: The trigger is induced by beta
power crossing a threshold (red line) (ON/OFF aDBS). Bottom left: Stimulation voltage varies step-wise based on the value of
beta power between an upper and a lower bound (red and blue line) (gradual AM aDBS). Top right: Stimulation voltage is linearly
proportional to the value of beta power (continuous AM aDBS). Bottom right: Stimulation voltage is modulated by a delayed and
filtered version of the LFP using the non-linear delayed feedback stimulation framework (model-based aDBS). (b) EEG and
ECoG-based triggers. Top: The trigger is induced by the cortical beta power going below a threshold (red line). Bottom: The
trigger is induced by the cortical gamma power exceeding a threshold (red line) (ON/OFF aDBS). (c) Electromyography-based
triggers. Top: The trigger is induced by the power in the 4–50 Hz range exceeding a threshold (red line). Bottom: The trigger is
induced by the EMG tremor power exceeding a first threshold (red line) and switched off when the EMG total power becomes
lower than a second threshold (blue line) (ON/OFF aDBS). (d) Wearable sensors-based triggers. Top left: Low frequency
stimulation (tremor’s frequency) is tailored to the most effective tremor’s phase (down-side black triangle) in ET patients detected
by inertial sensors (phase-based aDBS). Bottom left: Stimulation voltage varies step-wise based on the value of tremor power
between an upper and a lower bound (red and blue line) (gradual AM aDBS). Right: The frequency of stimulation is shifted from
130 Hz to 60 Hz when a freezing of gait episode is detected by kinematic markers (frequency-modulation aDBS).

was found to play an important role in the stimula-
tion efficacy.

Coordinated reset (CR) stimulation is an exper-
imental neuromodulation protocol engineering by
Tass and colleagues to desynchronize pathological
neural activities through the use of intermittent,
pseudo-randomized, low intense and spatially dis-
tributed pulse trains employing multiple DBS elec-
trode contacts [212]. The possible advantage of CR
relative to the conventional DBS is the reduction of
the spread of the electrical current outside the target
and, hence the probability to generate side-effects.
Furthermore, a CR DBS approach may provide com-
parable motor benefits and less disturbances in cog-
nitive processing, reducing the power consumption.
Until now, the potential of CR DBS to desynchronize

oscillatory activity is well-supported by computa-
tional models [213] and initially corroborated by
MPTP non-human primate studies and in a proof-
of-concept study of a small group of PD patients [212,
214] but lacks clinical tests in humans. CR stimula-
tion could be potentially applied both in open-loop
and adaptive scenario.

Recently, computational models are beginning to
enter in clinical tests, and they may serve as virtual
testing environments for the assessment of future
innovations in DBS: stimulation modalities, DBS
pulse waveforms and electrode geometries [130, 215–
217]. A step forward in this direction is represen-
ted by the work of Brocker and colleagues [133].
The authors determined through genetic algorithms
an optimal stimulation pattern with a frequency far
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outside the usual stimulation range (45 Hz) and, cru-
cially, experimental tests in PD patients proved that
this frequency performed as good as established fre-
quencies. Of note, an interesting model developed by
Frankemolle and colleagues [218] was used to define
parameter settings that minimized current spread to
non-motor regions of STN and clinical outcomes
were compared in a randomized and blinded fashion
with those obtained during standard clinical practice.
Results showed that model-defined settings exhibited
the same improving in motor symptoms, a significat-
ive reduction of the power consume (67%) and better
cognitive performance during cognitive tasks.

3.5. DBS and transcranial magnetic stimulation
A comparison with other neuromodulation tech-
niques can provide a complementary viewpoint to
understand better DBS network level effects and sug-
gest novel approaches. For instance, TMS is a useful
tool to measure cortical excitability through a non-
stationary magnetic field that provokes an electric
flow through electromagnetic induction in a specific
cortical area [219]. Pairing of STN DBS and TMS at
different interstimulus intervals can be used to test
effects of single pulse DBS on primary motor cor-
tex excitability and the connection between it and
the basal ganglia [220]. Single pulse DBS followed
by single-pulse TMS at the early phase (2–5 ms)
or later phase (~20 ms) showed an amplification of
the motor-evoked potentials amplitude, indicating
increased motor excitability at those latencies. These
intervals likely represent transmission in the hyper-
direct cortico-subthalamic pathway (2–5 ms) and in
the indirect basal-ganglia-thalamo-cortical pathway
(~20 ms). In the same work, STN DBS increased
the motor-evoked potentials amplitude by means of
its action on motor cortex rather than basal ganglia
structures. Furthermore, repetitive pairing of STN
DBS and TMS pulse was found to elicit long-term
potentiation-like effects at the same latencies.

4. Adaptive deep brain stimulation

One key idea of aDBS is to tailor the stimulation
according to a biomarker signal providing inform-
ation about clinical state and underlying neuro-
physiopathology. The main incentive behind aDBS
is the minimization of the stimulation-induced side
effects (see section 3.3) and the possibility to give
a stimulation accurately tuned to the needs of the
single patient. For instance, a study in a short-trial
of 10 patients suggested that aDBS may potentially
control levodopa-induced dyskinesias in implanted
patients with additional dopaminergic medication
[221]. However, further studies in a more chronic
setup are necessary to generalize this result due to
potential confounding effects induced by microle-
sional effects and edemas. A collateral advantage of

aDBS is the possibility of reducing battery consump-
tion relatively to DBS, although energy demands of
the sensing device must be considered. The crucial
steps to develop a valid aDBS system are (i) to identify
reliable biomarkers indicating the optimal stimula-
tion delivery time (table 1) and (ii) the availability of
IPGs capable to record and monitor such biomark-
ers and to adapt one or more stimulation parameters
online [36] of note, such biomarkers do not need to
necessarily be causal to themechanisms of the disease,
but can be an epiphenomenon correlating with the
symptoms’ severity [64, 79, 81] and evolving during
the course of the disease [61, 85]. Furthermore, the
biomarker should display a high signal to noise ratio,
and be robust to external artifacts such as movements
and cognitive processes [222] or the stimulation itself.
aDBS acts typically as a closed loop device as stimu-
lation is switched on and off based on external neural
or motor marker (see sections 4.1 and 4.2) but in
several cases the parameters of the stimulation are
fixed over the whole interval (e.g. [33]). In section
4.3 we will presentmore complex control strategies in
which a continuous closed loop strategy is implemen-
ted, as the stimulation parameters are adjusted online
according to the biomarker evolution (e.g. [221]).

4.1. Neural triggers for aDBS
A broad range of neural recordings were tested as
biomarkers for aDBS systems: LFPs [33, 223, 224],
APs [32, 225], ECoG [226] and electroencephalogram
(EEG) [227]. In the following we will discuss how
differences as information content, spatial and tem-
poral resolution, and invasiveness affect the clinical
performance of these signals.

4.1.1. Local field potentials recordings.
LFPs are the most studied signals for aDBS systems
[224, 228] (figure 2(a)). By experimental design, LFPs
are the result of a low-pass filtering of extracellular
recordings at 500 Hz and reflect the neural processes
occurring around the electrode in the extracellular
space with a spatial resolution of some hundreds of
µm [46]. Two key advantages of using LFPs as con-
trol variable in aDBS systems are that (i) they can
be recorded using the same DBS macro-electrodes
used for stimulation avoiding further surgical pro-
cedures and (ii) they display long-term stability at
the electrode-tissue interface. On the other hand, LFP
recordings can be affected by post-operative lesion
effects, i.e. stun effects [229], and simultaneous sens-
ing and stimulation can be hampered by stimula-
tion artifacts, since the presence of a strong stimula-
tion artifact can saturate the amplifiers of the sens-
ing module of the device. To overcome this prob-
lem, Rossi and colleagues designed an artifact-free
recording system for STN DBS called ‘FilterDBS’ that
removes the noisy harmonics using a bandpass fil-
ter (2–40 Hz) with an overall gain of 100 dB and
130 dB of common mode rejection ratio [230]. A
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combination of hardware-based strategies was also
developed byKent andGrill [231] to allow an artifact-
free recording of DBS evoked potentials [232, 233].
Other approaches use instead a template of the stim-
ulation signal that is subtracted from the recorded
signal generating an artifact-free track. However, this
template method is not suitable for aDBS where the
stimulation rate is not constant. Several DBS control
strategies can be developed starting from LFP record-
ings and will be discussed in detail in section 4.3. For
instance, Priori and colleagues were among the first
to test LFP control for aDBS systems in PD propos-
ing the beta-band power as a biomarker of the clin-
ical state of the disease [224]. In a series of studies,
the beta amplitude of the LFP signal was used to trig-
ger the stimulation with fixed DBS parameters (figure
2(a) top left), obtaining akin or even better clinical
outcomes than the conventional stimulation with a
concomitant reduction of both the battery consump-
tion (~40%) and the stimulation-induced side effects
in both unilateral and bilateral therapies [33, 34, 221,
234, 235]. These studies were conducted using lead
externalized electrodes in a short time window after
the surgery for electrodes implants in a laboratory
environment. Recently, a study with a portable aDBS
device tested for the first time the feasibility of this
system in 13 PD patients during 8 h of daily activities
[36]. A very promising alternative approach does not
rely on the detection of an increase in beta oscillations
power, but on the detection of long bursts of beta LFP
[74] that are tightly related to behavioral dysfunctions
(see section 2.2.1).

aDBS approaches using LFPs were mainly tested
on PD patients, for which conventional DBS prac-
tice is more consolidated. However, an aDBS-like
approach was used to develop proof-of-concepts
for other disorders such as TS and dystonia using
LFP as control signal, based on the centromedian-
parafascicular 5–15 Hz oscillations and pallidal theta
oscillations as biomarker input, respectively [236,
237]. Overall, the use of LFP as aDBS control sig-
nal is driven by the findings of spectral markers of
motor symptoms discussed in section 2.2., but this is
not necessarily be the optimal approach. We recently
advanced the hypothesis that the most informative
frequency coding a specific movement or movement
phases in the context of a pathological state (e.g. PD)
might not lie within the most prominent spectral
peak.

4.1.2. Action potentials.
The high information content and fine temporal and
spatial resolution make APs virtually a good can-
didate as biomarker for aDBS [238]. A study in an
MTMP primate model of PD indeed demonstrated
the possibility to use APs as trigger for the stimulation
[32]. However, several issues prevent APs from being
suitable for aDBS applications: (i) chronic intracel-
lular recordings are difficult to achieve and require

additional surgery and (ii) the APs signal is not stable
over long intervals of time and needs a continuous
recalibration process [239].

4.1.3. Electrocorticography.
ECoG signals have an amplitude up to 50–400 µV
with a frequency range up to 500 Hz. ECoG has been
extensively studied in patients with epilepsy implant-
ing subdural electrodes in the brain epidural or sub-
dural spaces and is currently used as a biomarker
in a brain-responsive neurostimulator (RNS system,
Neuropace) to treat drug-refractory mesial temporal
lobe epilepsy [240, 241]. The use of ECoG as bio-
marker, requires the implantation of additional elec-
trodes in the brain in a region far from the stimula-
tion site. A recent single-center analysis suggests that
ECoG implant procedure adds minimal intraoperat-
ive risks to surgery if it is performed by experienced
hands [242]. Nevertheless, adding ECoG to DBS
extends the surgery time slightly, which is always a
risk factor per se for all surgery procedures.Moreover,
the analysis of 695 extraoperative (i.e. post-surgery)
epilepsy ECoG cases showed that main complications
are the cerebrospinal fluid leakage, blood transfusions
and hemorrhages [243]. In few preliminary studies
in PD patients with dyskinesia, STN DBS was com-
bined with unilateral ECoG electrodes [244, 245]. In
one study in particular the subthalamic stimulation
voltage was triggered by cortical gamma-band (60–
90 Hz) oscillations, which are thought to be related
to dyskinesia [245] (figure 2(b), low). Interestingly,
this approach was able to maintain the clinical bene-
fit with an energy saving of ~40% relative to con-
tinuous stimulation. These findings provide prelim-
inary evidence that signal detectable in ECoG record-
ings might be a viable biomarker for aDBS to treat
PD-related dyskinesias. A different approach to aDBS
than what previously described has been used for ET.
In these patients, DBS is required to suppress hand
tremor during intentional movements. The stimula-
tion was therefore triggered by biomarkers identify-
ing the movement onset (rather than the onset of the
tremor). In a recent study, the hand movement was
detected using movement-related beta-band desyn-
chronization recorded by ECoG placed over the hand
sensorimotor area [246]. Once the movement was
decoded, the stimulation was triggered for the dur-
ation of the movement (figure 2(b), high). In this
case, the therapeutic stimulation was delivered only
when the patient was actively using their arms, thus
reducing the total energy delivered and potential side-
effects. Of note, in ET the tremor suppressive effects
of DBS are almost immediately evident. The accuracy
of the decoder was perfect as the stimulation was on
in 100% of movement tasks such as spiral drawing or
water pouring. Nowadays, more complex algorithms
are trying to avoid the use of a simple ‘on-off ’ logic,
that turns the system abruptly from a fully ‘off ’ to a
therapeutic stimulation level, limiting the slew rate of
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the voltage potential. The limitation of the slew rate
could reduce paresthesia episodes, accepting the cost
to not suppress the initial tremor in the first instants
of movement.

4.1.4. Electroencephalography.
As discussed in section 2, abnormal network syn-
chronization in BG propagates in the CBGT network,
and might be observed in cortical recordings [227].
For instance, a high thalamocortical theta coher-
ence was found in PD patients [247]. These findings
suggested the use of EEG as a potentially relevant
biomarker for PD symptoms, with the crucial asset
of non-invasiveness. However, no proof-of-concept
study of EEG-based aDBS systems has been disclosed
so far. This can be due to different reasons: (i) EEG
signals are low in amplitude (~10 µV) and are prone
to artifacts and high noise, (ii) EEG spatial resolution
is low (~5 cm) and (iii) the attachment of the elec-
trodes on the head can cause discomfort to the patient
[248].

4.2. Non-neural triggers for aDBS
Neurophysiological-recordings-based biomarkers
have not been the only type of feedback inputs tested
for aDBS. Other kind of signals were proposed for
this scope: kinematic [249, 250], EMG [251], bio-
chemical potential [252] and eHealth and mHealth
monitoring [253, 254].

4.2.1. Electromyography recordings.
Surface EMG from symptomatic extremities has
been successful in tremor detection and prediction
[255, 256]. Hence, EMG has been considered as a
potential control signal for aDBS [257] (figure 2(c),
high). EMG recordings were used to trigger aDBS
in a tremor-dependent fashion in ET and tremor-
dominant PD patients and in amovement-dependent
fashion in ET patients (see 4.1.3). In the former case,
one study used the EMG power in a 3 Hz tremor
band to trigger stimulation [258] (figure 2(c), low)
while another study employed the wavelet entropy in
the 8–16 Hz, obtaining ~85% of accuracy in ET and
~80% in PD [256]. In the latter case, the stimulation
was delivered whenever a movement was detected by
the EMG signal [259]. Results showed a ~90% con-
trol of the tremor with the 50% usage of the power
storage compared to continuous stimulation. The
main drawback of EMG signals are the artifacts ori-
ginated by small movements of the electrodes, lead-
ing to difficulties in achieving a reliable trigger in a
real-word scenario. Other limitations in using EMG
sensors are: (i) patients will have to wear chronically
the sensors with a possible discomfort and (ii) signal
processing and wireless data transmission may affect
the power storage of EMG sensors and impulse gen-
erator. Finally, reliable EMG-based biomarkers for
other symptoms (e.g. bradykinesia) have not been yet
developed.

4.2.2. Kinematic recordings.
Wearable sensors embedded with accelerometers and
gyroscopes have gained considerable interest in mon-
itoring PD symptoms. In several studies, these sensors
successfully detected or even predicted tremor onset
and might be useful also at assessing dyskinesia, bra-
dykinesia and freezing of gait episodes [255, 260–
262]. Several studies have supported the feasibility
and the efficacy of aDBS systems based on tremor
detection, in particular for ET and tremor-dominant
PD patients [35, 249]. A tremor-modulated stimu-
lation was used in PD patients in a study in which
the stimulation amplitude was modulated using the
tremor power (4–8 Hz) detected by the triaxial
gyroscope (figure 2(d), left), obtaining a substantial
decrease of the tremor amplitude (~40%) and of the
mean delivered stimulation voltage (~75%) [35]. An
alternative approach was tested in patients with ET
and dystonic tremor using the dominant phase of
tremor [249]: the most effective phase offset from the
tremor’s onset was assessed and triggered the deliv-
ery in each tremor’s cycle of a packet of pulses (e.g.
a burst of 4–6 pulses in 35 ms) during a tremor-
provoking posture holding. The intra-burst DBS fre-
quency was the same as that used during conven-
tional high frequency DBS, while the inter burst fre-
quency was determined according to patient’s tremor
frequency (~4 Hz). This approach achieved prom-
ising but still unsatisfactory results with tremor sup-
pression on average of 35% in ET and 20% in dystonic
patients. Of note, wearable sensors share the same
drawbacks of EMG sensors regarding comfort and
battery life. Moreover, algorithms to monitor other
motor symptoms than tremor need further develop-
ment to allow the use of this approach in PD patients.

4.2.3. Biochemical potentials.
As dopamine depletion plays a crucial role in the
pathophysiology of PD (see section 2.1), short term
fluctuations of this neurotransmitter have been pro-
posed as biomarker for aDBS. The development of
technologies (e.g. fast-scan cyclic voltammetry) able
to monitor real-time the dynamic of the dopamine
during neural changes might lead to the possibility
to use the dopamine to act as real-time trigger for
aDBS [263, 264]. Dopamine fluctuations were found
in rodent models of PD during DBS [252] and an
increase of striatal dopamine release was found in pig
with STNDBS [265]. In one study ET patients exhib-
ited a voltage-dependent release of adenosine during
thalamic DBS [266]. However, so far, no correlations
were found between the release of neurotransmitters
and the clinical state of the patients, hence its use as
aDBS trigger is still debated.

4.2.4. eHealth and mHealth monitoring.
The biomarkers described in the previous sections
provide a quantitative description (usually with one
single variable) of the clinical state of the patient
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according to neural state or a specific motor symp-
tom. However, adding a subjective experience of the
motor symptoms could improve the interpretability
of the features extracted by the signals. Moreover,
non-motor symptoms are strictly related with the
quality of life and they could be a strong predictor
of the DBS clinical outcome [267]. Electronic health
(eHealth) and mobile health (mHealth) applications
have the capability to fill this gap combining a sub-
jective assessment of the own feeling of the disease
with objective input signals [268]. Different clin-
ical trials tested the possibility to monitor in a mul-
timodal way the condition of the PD patients in their
home environment using the experience sampling
method (ESM) and mobile applications. ESM, also
referred to as a daily diary method, involves asking
patients to note their feelings, thoughts, behaviors
on multiple occasions over time [253]. For instance,
DBS settings could be adjusted by telemonitoring and
smartphone applications can track symptoms fluc-
tuations during the day [269, 270]. Notwithstanding
this proof-of-principle the feasibility and efficacy of
these approaches needs to be investigated further.

4.3. aDBS control strategies
Identifying and processing online symptoms-related
biomarkers is the first important step toward the
development of an aDBS system and it is the aspect
most research currently focuses on. The secondmajor
challenge is the design of an efficient online con-
trol mechanism of the stimulation pattern (see table
1). There are several factors to consider, such as
data computation, battery consumption, data trans-
fer, and the modality and frequency of stimulation
parameter adjustments. Furthermore, the possible
improvements of the current clinical DBS systems
range from the electrode configurations to the vari-
ation of amplitude, frequency and pulse-width of the
stimulation train. A priori, all these parameters may
be modified online in an aDBS approach.

4.3.1. Amplitude-based aDBS.
Most of aDBS systems rely on control architectures
that operate only on one of the pulse parameters,
usually the amplitude [33, 35, 234, 246, 259]. The
simplest paradigm is to deliver the stimulation a pre-
defined set of amplitude, frequency and pulse width,
but only when it is necessary in an ON/OFF fashion
(figure 2(a), top left). To avoid paraesthetic effects,
the onset of the stimulation should be a smooth
linear ramp from zero toward the desired value of
amplitude. ON/OFF AM systems were implemen-
ted (i) in akinetic-PD patients using the beta-LFP
amplitude and (ii) in tremor-dominant PD and ET
patients using machine learning algorithm on wear-
able sensor and EMG data [33, 255, 256]. Other
approaches implement instead an amplitude modu-
lation (AM) through different designs: gradual AM

and continuous AM. The former is a closed-loop reg-
ulation that relies on a quantized policy to maintain
the voltage amplitude between two desired values,
i.e. upper and lower thresholds (figure 2(a), bottom
left). In this paradigm, the upper and lower thresholds
and the quantization policy are crucial but a com-
mon consensus on these values has not been achieved
yet [35, 245]. The latter is a closed-loop regulation
where the control policy is a continuous feedback sig-
nal proportional to the instantaneous vale of the bio-
marker (figure 2(a), top right). Thus, the output amp-
litude reflects the envelope of the input signal. Rosa
and colleagues presented this approach in akinetic-
PD patients using the beta amplitude of the STN LFP
as input to control the level of stimulation [34, 36,
221].

4.3.2. Phase-based aDBS.
Cagnan and colleagues showed that continuous stim-
ulation at patients’ tremor frequency (3–8 Hz)
entrains tremor-related neural oscillation revealing
stimulation induced transitory amplification and
suppression of neural synchrony reflected peripher-
ally as transient tremor AM. From this observation,
they tailored the low frequency stimulation timing to
themost effective tremor’s phase in ET patients detec-
ted by inertial sensors, reducing the likelihood to elicit
side-effects due to a lower total stimulation delivered
without compromising the clinical efficacy [249, 250]
(figure 2(d)). Of note, in contrast to amplitude-based
approaches, these model-based approaches may not
interfere with other rhythmic activities not phase-
locked to the stimulation.

4.3.3. Adaptive modulation of stimulation frequency
and pulse width.
Recent studies in PD patients [271] have sugges-
ted the possibility to use low frequency DBS (50–
80 Hz) to treat axial symptoms (e.g. freezing of gait,
speech and swallowing) that did not respond, or
were evoked, by conventional high-frequency DBS
(figure 2(d), right). However, these beneficial effects
were not consistently present or exhausted over time
and low-frequency DBS led sometimes to a worsen-
ing of appendicular symptoms, in particular tremor
[272, 273]. Modulation of frequency may become
even more interesting when integrated in a feedback
approach that includes the ability to decode behavi-
oral states from an implanted DBS electrode. Prelim-
inary results suggest that, if proper features are extrac-
ted from all four contacts STN LFP signals, is possible
to build a hierarchical decoder of a variety of behavi-
ors, including speech, mouthmovements, armmove-
ments (reach), and random movements [274]. With
the randommovement class, they refer to those parts
of the recorded signal where the subject is in the rest
position and no specific activity is done. The reason
behind using the random segments is to train the clas-
sifier to recognize other tasks rather than the defined
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ones. The synergy between the possibility to decode
the behavioral patient’s state using LFP features and
the modulation of the frequency parameter could be
an alternative aDBS approach to AM. Finally, pulse-
widthmodulationmight provide clinical benefits tar-
geting more selectively axons belonging to the direct
cortico-subthalamic pathway. Shorter pulse-widths
may increase the therapeutic window while reducing
battery consumption [275].

5. Perspectives and challenges for aDBS

DBS greatly evolved in the last years. Advances inDBS
systems (e.g. sensing devices), combined with elec-
trodes with higher spatial selectivity could provide
more efficient and virtually side-effect free therapies
for patients affected by movement disorders. How-
ever, there are still many open issues that will chal-
lenge researchers in the next years (see table 1).

One of the major challenges is the identification
of a set of reliable biomarkers that can track the clin-
ical state considering the different demands per phen-
otype of the disease. For example, besides bradykin-
esia PD patients experience many other motor (e.g.
rigidity, tremor, gait freezing) and non-motor symp-
toms (e.g. cognitive dysfunction, apathy and depres-
sion, sleep disorders, etc) [276]. These symptoms
are linked to different pathophysiological neural cir-
cuitry and hence may require different biomarkers
to be detected. In particular, pathological beta oscil-
lations are thought to be correlated with PD-related
akinetic-rigid symptoms while tremor severity does
not seem to correlate with beta power. Moreover,
pathological pathways are probably interweaved with
residual physiological or compensatory ones, so non-
specific stimulation might interfere with them.

It is likely that in future aDBS therapies each
patient will undergo an initial calibration period
where the value of the parameters of the control
strategywill be tuned to the individual characteristics,
but even in this case the robustness of the biomark-
ers over time will be of paramount relevance. Bio-
markers should be able to cope over the long times-
cale with confounding factors as (changes in) con-
comitant medication, aging, progression of the dis-
ease. Once the optimal biomarkers set is selected,
the control policy should tailor the stimulation pat-
tern not only according to pathology and its cir-
cuits manifestations, but also according to everyday
actions and behaviors of patients. Indeed, consider-
ation of patient behavior such as grasping, walking,
talking, sleeping etc could also further improve the
determination of the optimal stimulation paradigm.
For example, tremor-dominant PD patients should
require low levels of stimulation during the sleep
because of a lower disease burden. Wearable sensors,
electromyographic signals and LFP signals could be
used in combination to detect the state of the patient
using machine learning algorithms, implementing

an individual patient-state disease-specific control
policy of the stimulation in the aDBS system. In the
next future, technology such as Internet of Things
and Cloud Computing will help the automation and
information processing to allow the implementation
of complex algorithms in a real-time scenario without
the insertion of further electronic in the patient. The
use of rechargeable systems and telemetry could allow
a continuous wireless flow of data with marginal
impact on device battery and the possibility to assess
continuously the patient in a more complex scenario.
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[183] Jech R, Urgošík D, Tintěra J, Nebuželský A, Krásenský J,
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